

Date: 12-04-2024

Dept. No.

Max. : 100 Marks

Time: 09:00 AM - 12:00 NOON

SECTION A – K1 (CO1)

Answer ALL the questions (10 x 1 = 10)

1	Define the following
a)	Stochastic Independence
b)	Normal distribution
c)	MGF of gamma distribution
d)	Chi square distribution
e)	Order statistics
2	Fill in the blanks
a)	For $f(x, y) = \begin{cases} \frac{1}{8}(6 - x - y); & 0 \leq x < 2, 2 \leq y < 4 \\ 0, & \text{otherwise} \end{cases}$ find $P(X < 1 \cap Y < 3)$
b)	Linear combination of independent normal variates is a variate.
c)	If the parameter $\theta = 1$, in an exponential distribution then variance mean.
d)	Chi square variate is the of a standard normal variate with 1 degree of freedom.
e)	Standard binomial variate tends to variate as $n \rightarrow \infty$.

SECTION A – K2 (CO1)

Answer ALL the questions (10 x 1 = 10)

3	Match the following
a)	Rectangular Distribution - λ
b)	If X and Y are independent standard normal variates then for $U = X + Y$, $U \sim$ Cauchy
c)	Mean and Variance of gamma distribution $\gamma(\lambda)$ is Uniform
d)	When $v = 1$ then student's t distribution reduces to Dependent
e)	The $X_{(r)}$'s of order statistics are $N(0,2)$
4	True or False
a)	$E(X) = E\{E(X / Y)\}$
b)	The value of $\beta_2 = 0$ for normal distribution.
c)	Cauchy Distribution lacks memory.
d)	F distribution is the ratio of two independent chi square variates divided by their respective degrees of freedom.
e)	In order statistics $X_1, X_2, \dots, X_n, X_{(n)}$ is the largest value.

SECTION B – K3 (CO2)

Answer any TWO of the following (2 x 10 = 20)

5	Prove that Normal distribution as a Limiting form of Binomial distribution.
6	Prove that a linear combination of independent normal variates is also a normal variate.
7	Derive the m.g.f of one-parameter gamma distribution.
8	Derive the mean and variance of chi-square distribution.

SECTION C – K4 (CO3)

Answer any TWO of the following (2 x 10 = 20)

9	If X is uniformly distributed with mean 1 and variance 4/3, find P (X < 0).
10	State the properties of Normal Distribution.
11	Derive the MGF of Chi-Square distribution.
12	Derive the cumulative distribution function of a first order statistic and n^{th} order statistic.

SECTION D – K5 (CO4)

	Answer any ONE of the following 20)	(1 x 20 =
13	<p>a) Given the joint pdf</p> $f(x, y) = \begin{cases} 6x^2y, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$ <p>Find $P(0 < X < \frac{3}{4}, \frac{1}{3} < Y < 2)$, $P(X + Y < 1)$, $P(X > Y)$ and $P(X < 1 / Y < 2)$.</p> <p>b) Find the MGF of normal distribution.</p>	
14	<p>a) Derive the MGF of Exponential distribution.</p> <p>b) Derive the MGF of Uniform distribution and hence obtain mean and variance.</p>	

SECTION E – K6 (CO5)

	Answer any ONE of the following 20)	(1 x 20 =
15	Derive the mean and variance of beta distribution of first kind.	
16	State and prove the Lindeberg-Levy theorem.	

\$